Offline shadow copies

This was already described here, but let’s revisit the topic.

Let’s install the Windows Server 2016 operating system on a machine, install all available updates, configure the machine as a domain controller and an RDP server, create several domain user accounts. Then, create a shadow copy and delete it. After some time, create a new shadow copy and keep the machine running for a while, then create another shadow copy. How many shadow copies are there? Two (the oldest one was deleted, thus not counted).

Let’s simulate a remote attack against this domain controller. The attack involves dumping the ntds.dit file. In order to copy that file, I will use an approach outlined in this guide: create a shadow copy, copy the ntds.dit file from it, then delete this shadow copy to remove my tracks (all these actions are performed over an RDP connection, just like a real attack).

Finally, let the system run for some time and occasionally create two more shadow copies. How many shadow copies are there now?

Continue reading “Offline shadow copies”

Extracting unallocated clusters from a shadow copy

Yes, shadow copies may contain a relatively small number of unallocated clusters. In this post, I will describe a new way to extract such clusters for further analysis.

The problem with unallocated clusters in shadow copies is that the volsnap driver doesn’t care about them. This driver can snapshot some unallocated ranges, but most of them are out-of-scope.

When reading unallocated clusters from a shadow copy, data from the current state of a volume can be returned. Obviously, this data has nothing to do with the shadow copy:

However unexpectedly when I ran the Encase Recover Folders feature across the HarddiskShadowcopy5 volume it found traces of the Sony folder and in fact many other files post dating the creation of the shadow copy.
The Encase Recover Folders feature parses unallocated clusters looking for folder metadata. It seems that it found data in unallocated clusters relating to the current volume. Therefore I believe that any deleted but recoverable data within the shadow copies needs to be treated with caution.

Null bytes instead of real data can be returned as well.

There is no way to distinguish between “real” and “fake” unallocated data when reading a shadow copy using the device exposed by the volsnap driver (“HarddiskVolumeShadowCopy<N>“).

Continue reading “Extracting unallocated clusters from a shadow copy”

Scoped shadow copies

Have you ever heard of scoped shadow copies? They have been around since the release of Windows 8, but not much information is available on this topic.

A shadow copy becomes scoped when data blocks not required by the system restore process are excluded from copy-on-write operations. When you create a restore point, a scoped shadow copy is created by default for a system volume (in Windows 8, 8.1 & 10).

Continue reading “Scoped shadow copies”